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Abstract 
We have characterized step-index plastic optical fibers (SI-POFs) by estimating generalized diffusion 

and attenuation functions of the propagation angle. We assume that power flow is described by 

Gloge´s differential equation and find a global solution that was fitted to experimental far field 

patterns (FFPs) registered using a CCD camera as a function of fiber length. The diffusion and 

attenuation functions obtained describe completely the fiber behavior and can be used along with 

the power flow equation to predict the optical power distribution for any launching condition and for 

any fiber length. Using this approach, we simulate the experimental procedure proposed to estimate 

the coupling strength based on the changes in the fiber output power pattern in order to analyze its 

performance. 

 

1. Introduction 
The shape of the FFP of a POF is determined by the angular distribution of optical power at the 

output of the fiber that depends on the initial distribution given by the launching condition, on power 

diffusion and attenuation and, naturally, on fiber length. Gloge’s equation has been frequently used 

to describe the evolution of the modal power distribution with fiber length [1], although most previous 

works assumed several approximations that are not consistent with some features found in 

experimental FFPs. Therefore, we propose a model where diffusion and attenuation are described 

by functions of the propagation angle showing that a constant diffusion predicts our experimental 

FFPs with less accuracy than a more general diffusion function. We characterize three SI-POFs from 

different manufactures by obtaining their diffusion and attenuation functions that can be introduced in 

Gloge’s differential equation to solve it using different initial distributions. As we have found that 

constant diffusion does not give a good description of the behavior of high NA POFs, we want to 

analyze how this affects the experimental method proposed by Gambling el al. [2] to measure the 

coupling strength (here called diffusion constant) which is based, naturally, on the assumption that 

diffusion can be accurately modeled by a constant value. Our aim is to simulate the experimental 



procedure and to compare the predictions of our model using both constant and sigmoid diffusion 

functions to verify which reproduces better previous experimental findings. 

The paper is organized as follows. We first give a brief overview of our model and then, describe the 

experimental method to obtain FFPs as a function of fiber length and how these measurements are 

used to characterize the POFs [3]. In the third section, we describe the simulation of Gambling 

method which is based on launching a plane wave at different angles onto the fiber to determine the 

transition angle for which the fiber output pattern changes from a disk to a ring. In the last section, 

we summarize the conclusions drawn from our results. 

 

2. Fiber propagation model 
We propose a more general model based on finding a global solution for the following equation: 
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where both fiber diffusion ( )D θ and attenuation ( )α θ are described by angular functions of the 

inner propagation angle. For large z values, when the angular power distribution has reached its 

steady state distribution (SSD), the solution of the equation can be expressed as the product of two 

functions of independent variables: ( ) z
SSDP Q e γθ −=  where ( )Q θ  describes the shape of the SSD 

profile, while the dependence on fiber length z is given by a decreasing exponential function which 

accounts for the power decrease due to the fiber attenuation γ. Introducing SSDP  into Eq. (1), gives 

an expression of ( )α θ  in terms of ( )D θ  and ( )Q θ as follows: 
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In this way, a shape for the attenuation function does not have to be assumed as it can be directly 

calculated. On the other hand, although fiber diffusion has usually been modeled by a constant value 

in POFs [4-5], we use a sigmoid function of the squared inner propagation angle given by: 
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3. Fiber characterization method 
In this section, we describe the experimental method to acquire the FFP images and the general 

procedure used to characterize the fibers by obtaining their attenuation and diffusion functions. 

 

3.1 Experimental technique to acquire FFPs 

Three high NA polymethyl methacrylate (PMMA) fibers of 1mm diameter from different 

manufacturers were tested: ESKA-PREMIER GH4001 (GH) from Mitsubishi, HFBR-RUS100 (HFB) 

from Agilent, and PGU-FB1000 (PGU) from Toray. All fibers have nominal NA near 0.5 

corresponding to an inner critical angle around 19º. We used a 12 bit monochrome cooled camera 

QICAM FAST 1394 to register the FFP images reflected on a white screen placed opposite the fiber 



output end as a function of fiber length. The input end of the fiber was connected to a transmitter 

based on an AlGaInP laser diode (LD SANYO DL-3147-021) emitting 5mW at 645nm and with a 

typical divergence of 30º in the perpendicular plane, and of 7.5º in the parallel plane. The 

experimental procedure was the following: We started with the whole length of the fiber to test rolled 

onto an 18cm diameter reel and the FFP image was taken. Then, a segment of 10m/5m/2.5m was 

cut from the output end of the fiber and the whole procedure started again, up to 10m. The longest 

measured length was different for each fiber: 175m for the GH fiber, 100m for the HFB and 150m for 

the PGU. Further details of the method to obtain the FFPs were explained elsewhere [6]. 

 

3.2 Characterization procedure 

To estimate the diffusion and attenuation functions we followed two different approaches modeling 

diffusion first by a constant as has been usually assumed [1,2, 4-5] and then, by the sigmoid given 

by Eq. (3), in order to learn which model gives predictions closer to the experimental data. Eq. (2) 

gives the attenuation provided γ, ( )Q θ and ( )D θ  are known. Thus, we first estimated γ directly from 

our experimental data and fitted the experimental SSDs by a sigmoid-like function of the squared 

propagation angle to obtain an analytical form of ( )Q θ  and its derivatives [3]. Then, we solved 

numerically Eq. (1) [7] to obtain the model predictions for the FFP profiles starting with a guess 

for ( )D θ . The final estimate is the one that minimizes the RMSE between the measured FFPs and 

the model predictions and was found using a direct search pattern method [8]. In each iteration, the 

latest estimate of ( )D θ was introduced in Eq. (2) to calculate the corresponding attenuation function.  

In Table 1, the values of the parameters of the diffusion function for the two approaches and their 

corresponding RMSEs are shown. The greater RMSE values obtained for all fibers with the constant 

diffusion model suggest that the experimental FFPs are better described characterizing diffusion by 

a sigmoid function. 

 

Table 1. Parameters for the constant diffusion and sigmoid diffusion functions that minimizes the error  

between experimental and model-predicted far field profiles. 

 cD   ( )D θ a 

Fiber Rad2/m RMSE  D0 D1 D2 σd RMSE 

GH 1.317 10-4 26.5 10-3  5.089 10-5 10.16 10-4 1.78 10.32 11.3 10-3 

HFB 2.045 10-4 23.5 10-3  5.164 10-5 30.26 10-4 1.73 9.19 11.0 10-3 

PGU 2.00 10-4 27.0 10-3  12.06 10-5 3.035 10-4 0.18 12.57 18.8 10-3 

a Defined in Eq. (3). 
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(a) Diffusion functions (b) Attenuation functions 

Fig. 1. Diffusion and attenuation functions for the three fibers obtained by modeling diffusion with the 
sigmoid function given by Eq. (3).  

 

The sigmoid diffusion functions calculated introducing parameters from Table 1 into Eq. (3), and their 

corresponding attenuation functions obtained directly from Eq. (2) are plotted in Fig. 1 (a) and Fig. 

1 (b) respectively, for the three fibers. Fig. 1 (a) displays higher diffusion at small angles, which is the 

dominant factor at short fiber lengths. At longer fiber lengths, however, angular attenuation has more 

importance, determining the shape of the SSD. Fig 1 (b) shows that attenuation is relatively flat at 

the lower angles and rise steeply near the critical angle although the increase is less abrupt than that 

postulated in other works [4-5] where it is described by a function whose value is infinity just above 

the critical angle. These models cannot reproduce the presence of power above the critical angle 

which was found in experimental patterns indicating that light paths exist beyond the critical angle. 

 

4. Determination of the transition angle versus fiber length  
Here, we analyze the experimental technique proposed in [2], where an analytical solution for 

Gloge’s differential equation was found when the input distributions are plane waves at different 

angles respect to fiber axis under certain assumptions: Constant diffusion, parabolic attenuation and 

no upper bound for the propagation angle. From this analytical solution, the transition angle tθ , 

defined as the launching angle for which the output pattern changes from a disk to a ring, can be 

calculated as a function of fiber length. A linear relationship in log-log coordinates for the transition 

angle versus fiber length can be derived using certain approximations that restrict their validity to 

relatively short lengths and small angles, and is given by: 

 ( ) ( ) ( )0.5log 0.5log log 2t z Dθ = +   (4) 

Thus, a method to estimate D that has been widely used consists in the measurement of the 

transition angle as a function of length and the fit of a straight line to these data to calculate D from 

the vertical intercept [9-11]. Here, we solve Gloge’s differential equation introducing plane waves at 



different angles as the initial power distributions, and modeling diffusion both with the constant and 

with the sigmoid functions defined by the parameters given in Table 1. The transition angles 

obtained from the simulated FFPs at each fiber length are shown in Fig. 2 for the three fibers as 

circles for the sigmoid function and squares for the constant function which are all fitted by straight 

lines (solid lines for the sigmoid diffusion model and dashed lines for the constant diffusion model). 

The parameters for the fits to the data simulated with the sigmoid diffusion model are given in the 

caption of Fig. 2. For the constant diffusion model, the fitted slopes are 0.5 and the estimated 

diffusion constants coincide with the value of Dc from Table 1, which confirms the validity of the 

experimental technique if diffusion could be described by a constant. These values of diffusion are, 

however, significantly smaller to those obtained experimentally in previous works by launching light 

from a He-Ne laser at different angles: 9.8 10-4 rad2/m for the HFB fiber, and 3.5 10-4 rad2/m for the 

GH fiber [11]. 
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(a) GH fiber  (b) HFB fiber (c) PGU fiber 
Fig. 2. Transition angle versus fiber length obtained by modeling diffusion as a sigmoid function (circles for simulated 
data and solid lines for linear fits) and modeling as a constant (squares for simulated data and dashed lines for liner 
fits) for the three fibers tested. The parameters for the linear fits to the data obtained for the sigmoid diffusion model 
are: D=3.8 10-4 rad2/m, slope: 0.42 for GH, D=10.2 10-4 rad2/m, slope:0.36 for HFB, and D=3.6 10-4 rad2/m slope: 
0.45 for PGU. 
 

On the other hand, the plots of the transition angle versus length predicted with sigmoid diffusion 

display greater deviations from linearity and the fitted slopes are always shallower than 0.5. Figures 

also show how the transition angles obtained using the sigmoid diffusion model are significantly 

higher. Consequently, the diffusion constant estimated by the linear fit of Eq. (4) to these simulated 

data is always higher and closer to the experimental findings. Also notice that these estimates are 

always between the maximum and minimum values of ( )D θ , but much closer to the maximum, 

suggesting that the main factor behind the power spread that smoothes the ring pattern towards a 

disk pattern is the value of the weighted average of the diffusion function at lower angles where most 

optical propagating power is confined. 

Our results support a model of fiber diffusion with a more general function of the propagation angle, 

although the experimental estimates using Gambling method are a reasonable approach to the 

power averaged fiber diffusion. 



5. Conclusions  
In summary, we have characterized three high NA PMMA SI-POFs using experimental FFPs and a 

model based on Gloge’s equation to obtain the angular diffusion and attenuation functions. We 

found that FFPs are better predicted using a sigmoid rather than a constant diffusion function. The 

simulation of Gambling experiment to estimate diffusion and its comparison with experimental results 

provide further evidence supporting a non-constant diffusion function. 
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